Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; 10(5): e0105622, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2001788

ABSTRACT

Infection by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has posed a severe threat to global public health. The current study revealed that several inhibitors of protein kinases C (PKCs) possess protective activity against SARS-CoV-2 infection. Four pan-PKC inhibitors, Go 6983, bisindolylmaleimide I, enzastaurin, and sotrastaurin, reduced the replication of a SARS-CoV-2 replicon in both BHK-21 and Huh7 cells. A PKCδ-specific inhibitor, rottlerin, was also effective in reducing viral infection. The PKC inhibitors acted at an early step of SARS-CoV-2 infection. Finally, PKC inhibitors blocked the replication of wild-type SARS-CoV-2 in ACE2-expressing A549 cells. Our work highlights the importance of the PKC signaling pathway in infection by SARS-CoV-2 and provides evidence that PKC-specific inhibitors are potential therapeutic agents against SARS-CoV-2. IMPORTANCE There is an urgent need for effective therapeutic drugs to control the pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). We found that several inhibitors of protein kinases C (PKCs) dramatically decrease the replication of SARS-CoV-2 in cultured cells. These PKC inhibitors interfere with an early step of viral infection. Therefore, the rapid and prominent antiviral effect of PKC inhibitors underscores that they are promising antiviral agents and suggests that PKCs are important host factors involved in infection by SARS-CoV-2.


Subject(s)
Antiviral Agents , Protein Kinase C , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Cells, Cultured , Protein Kinase C/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
2.
Mol Cell Proteomics ; 20: 100134, 2021.
Article in English | MEDLINE | ID: covidwho-1356359

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global health pandemic. COVID-19 severity ranges from an asymptomatic infection to a severe multiorgan disease. Although the inflammatory response has been implicated in the pathogenesis of COVID-19, the exact nature of dysregulation in signaling pathways has not yet been elucidated, underscoring the need for further molecular characterization of SARS-CoV-2 infection in humans. Here, we characterize the host response directly at the point of viral entry through analysis of nasopharyngeal swabs. Multiplexed high-resolution MS-based proteomic analysis of confirmed COVID-19 cases and negative controls identified 7582 proteins and revealed significant upregulation of interferon-mediated antiviral signaling in addition to multiple other proteins that are not encoded by interferon-stimulated genes or well characterized during viral infections. Downregulation of several proteasomal subunits, E3 ubiquitin ligases, and components of protein synthesis machinery was significant upon SARS-CoV-2 infection. Targeted proteomics to measure abundance levels of MX1, ISG15, STAT1, RIG-I, and CXCL10 detected proteomic signatures of interferon-mediated antiviral signaling that differentiated COVID-19-positive from COVID-19-negative cases. Phosphoproteomic analysis revealed increased phosphorylation of several proteins with known antiviral properties as well as several proteins involved in ciliary function (CEP131 and CFAP57) that have not previously been implicated in the context of coronavirus infections. In addition, decreased phosphorylation levels of AKT and PKC, which have been shown to play varying roles in different viral infections, were observed in infected individuals relative to controls. These data provide novel insights that add depth to our understanding of SARS-CoV-2 infection in the upper airway and establish a proteomic signature for this viral infection.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions/physiology , Nasopharynx/virology , Proteome/analysis , COVID-19/immunology , COVID-19/virology , Chromatography, Liquid , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Interferons/immunology , Interferons/metabolism , Phosphoproteins/analysis , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Kinase C/metabolism , Proteome/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Opioid/metabolism , Signal Transduction , Tandem Mass Spectrometry , Ubiquitin/metabolism
3.
Aging (Albany NY) ; 13(9): 12466-12478, 2021 04 25.
Article in English | MEDLINE | ID: covidwho-1202267

ABSTRACT

Activated protein C (APC) is an anticoagulant with potent cytoprotective and anti-inflammatory effects. K150del, a natural variant of APC, is associated with reduced anticoagulant activity. We performed a comprehensive study to analyze the functional alterations of the K150del mutant. Transcriptome analysis of HEK 293T cells treated with wild and mutant APC revealed differentially expressed genes enriched in inflammatory, apoptotic, and virus defense-related signaling pathways. Both wild and mutant APC displayed concentration-dependent cytoprotective effects. Low concentrations of K150del mutant resulted in decreased anti-inflammatory and anti-apoptotic activities, whereas its higher concentrations restored these effects. Expression of virus defense-related genes improved in mouse lung tissues after repeated administration of the APC variant. These results suggest that the APC K150del mutant could help clinicians to accurately predict disease risks and serve as a potential auxiliary therapeutic in viral infections, including 2019 coronavirus disease (COVID-19).


Subject(s)
COVID-19 , Protein Kinase C/genetics , Protein Kinase C/metabolism , Animals , HEK293 Cells , Humans , Mice , Polymorphism, Single Nucleotide , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL